Info

Sunday, October 25, 2020

PENGENALAN FLUIDA

1.1 Definisi Fluida

Fluida ( zat alir ) adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap bentuk ketika ditekan, misalnya zat cair dan gas. Fluida dapat digolongkan dalam dua macam, yaitu fluida statis dan fluida dinamis. Fluida atau zat alir adalah bahan yang dapat mengalir dan bentuknya dapat berubah dengan perubahan volume. Fluida mempunyai kerapatan yang harganya tertentu pada suhu dan tekanan tertentu.Jika kerapatan fluida dipengaruhi oleh perubahan tekanan maka fluida itu dapat mampat atau kompresibel. Sebaliknya fluida yang kerapatannya hanya sedikit dipengaruhi oleh perubahan tekanan disebut tidak dapat mampat atau inkompresibel. Contoh fluida kompresibel adalah udara (gas) sedangkan yang inkompresibel adalah air (zat cair).

 

Fluida statis adalah fluida yang tidak bergerak atau dalam keadaan diam, misalnya air dalam gelas. Dalam fluida statis kita mempelajari hukum-hukum dasar yang dapat menjelaskan antara lain: mengapa makin dalam kita menyelam makin besar tekanan yang kit alami; mengapa kapal laut yang terbuat dari besi dapat mengapung di permukaan air laut; managpa kapal selam dapat melayang, mengapung dan tenggelam dalam air laut; mengapa nyamuk dapat hinggap dipermukaan air; berapa ketinggian zat akan naik dalam pipa kapiler.

 

Sifat fluida tidak dapat dengan mudah dimampatkan, sehingga fluida dapat menghasilkan tekanan normal pada semua permukaan yang berkontak dengannya. Pada keadaan diam (statik), tekanan tersebut bersifat isotropik, yaitu bekerja dengan besar yang sama ke segala arah. Karakteristik ini membuat fluida dapat mentransmisikan gaya sepanjang sebuah pipa atau tabung, yaitu, jika sebuah gaya diberlakukan pada fluida dalam sebuah pipa, maka gaya tersebut akan ditransmisikan hingga ujung pipa. Jika terdapat gaya lawan di ujung pipa yang besarnya tidak sama dengan gaya yang ditransmisikan, maka fluida akan bergerak dalam arah yang sesuai dengan arah gaya resultan.

 

Konsepnya pertama kali diformulasikan, dalam bentuk yang agak luas, oleh matematikawan dan filsuf Perancis, Blaise Pascal pada 1647 yang kemudian dikenal sebagai Hukum Pascal. Hukum ini mempunyai banyak aplikasi penting dalam hidrolika. Galileo Galilei, juga adalah bapak besar dalam hidrostatika.

 

1.2 Jenis Fluida

Fluida pada dasarnya terbagi atas dua kelompok besar berdasarkan sifatnya, yaitu fluida cairan dan fluida gas. Fluida diklasifikasikan atas 2, yaitu:

1. Fluida Newton: Dalam fluida Newton terdapat hubungan linier antara besarnya tegangan geser diharapkan dan laju perubahan bentuk yang diakibatkan.

2. Fluida non Newton: Disini terdapat hubungan yang tak linier antara besarnya tegangan geser yang diterapkan dengan laju perubahan bentuk sudut.

 

Namun, dapat pula kita klasifikasikan berdasarkan hal berikut;

a. Berdasarkan kemampuan menahan tekanan:

1.     Fluida incompressible (tidak termampatkan), yaitu fluida yang tidak dapat dikompressi atau volumenya tidak dapat ditekan menjadi lebih kecil sehingga r-nya (massa jenisnya) konstan.

2.     Fluida compressible (termampatkan), yaitu fluida yang dapat dikompressi atau volumenya dapat ditekan menjadi lebih kecil sehingga r-nya (massa jenisnya) tidak konstan.

 

b. Berdasarkan struktur molekulnya:

1.     Cairan: Fluida yang cenderung mempertahankan volumenya karena terdiri atas molekul-molekul tetap rapat dengan gaya kohesif yang relatif kuat dan fluida cairan praktis tak compressible.

2.     Gas: Fluida yang volumenya tidak tertentu karena jarak antar molekul-molekul besar dan gaya kohesifnya kecil sehingga gas akan memuai bebas sampai tertahan oleh dinding yang mengukungnya. Pada fluida gas, gerakan momentum antara molekulnya sangat tinggi, sehingga sering terjadi tumbukan antar molekul.

 

c. Berdasarkan tegangan geser yang dikenakan:

1.     Fluida Newton adalah fluida yang memiliki hubungan linear antara besarnya tegangan geser yang diberikan dengan laju perubahan bentuk yang diakibatkan.

2.     Fluida non Newton adalah fluida yang memiliki hubungan tidak linear antara besarnya tegangan geser dengan laju perubahan bentuk sudut.

 

d. Berdasarkan sifat alirannya:

1.     Fluida bersifat Turbulen, dimana alirannya mengalami pergolakan (berputar-putar).

2.     Fluida bersifat Laminar (stream line), dimana alirannya memiliki lintasan lapisan batas yang panjang, sehingga dikatakan juga aliran berlapis-lapis

 

1.3 Parameter Fluida

a. Densitas

Kerapatan cairan adalah suatu ukuran dari konsentrasi massa dan dinyatakan dalam bentuk massa tiap satuan volume. Oleh karena temperatur dan tekanan mempunyai pengaruh (walaupun sedikit) maka kerapatan cairan dapat didefinisikan sebagai: massa tiap satuan volume pada suatu temperatur dan tekanan tertentu.

 

b. Viskositas

Viskositas atau kekentalan dari suatu cairan adalah salah satusifatcairanyang menentukan besarnya perlawanan terhadap gaya geser. Viskositas terjadi terutama karena adanya interaksi antara molekul-molekul cairan. Suatu cairan dimana viskositas dinamiknya tidak tergantung pada temperatur, dan tegangan gesernya proposional (mempunyai hubungan liniear) dengan gradient kecepatan dinamakan suatu cairan Newton.Perilaku viskositas dari cairan ini adalah menuruti Hukum Newton untuk kekentalan.

 

Cairan Non Newton mempunyai tiga sub grup yaitu:

1.     Cairan dimana tegangan geser hanya tergantung pada gradient kecepatan saja, dan walaupun hubungan antara tegangan geser dan gradient kecepatan tidak linier, namun tidak tergantung pada waktu setelah cairan menggeser.

2.     Cairan dimana tegangan geser tidak hanya tergantung pada gradient kecepatan tetapi tergantung pula pada waktu cairan menggeser atau pada kondisi sebelumnya.

3.     Cairan visco-elastis yang menunjukkan karakteristik dari zat pada elastis dan cairan viskus.

 

c. Kompresibilitas

Kemampumampatan fluida adalah salah satu sifat fluida, yaitu seberapa mudah volume dari suatu massa fluida dapat diubah apabila terjadi perubahan tekanan, artinya seberapa mampu-mampatkah fluida tersebut. Sebuah sifat yang biasa dipakai untuk mengetahui kemampu-mampatan fluida adalah modulus borongan atau Bulk modulus, dengan simbol Ev. Rumusan Modulus Bulk yaitu :

 

Ev = (dp/(dρ/ρ)) (T konstan)

Persamaan ini juga setara dengan rumus :

 

Ev = - (dp/((d)/)) (T konstan)

Perbedaan kedua persamaan diatas adalah terletak pada tanda koefisien. Koefisien persamaan Modulus Bulk yang menggunakan data perubahan densitas bernilai positif karena semakin besar gaya tekan yang didapat maka fluida akan semakin padat atau densitasnya naik. Sedangkan Koefisien persamaan Modulus Bulk yang menggunakan data perubahan volume bernilai negatif karena semakin besar gaya tekan yang di dapat fluida akan mengalami pengurangan volume.

 

Dari hasil nilai modulus yang kita dapat, maka dapat kita analisis bahwa semakin besar nilai Modulus Bulk, maka hal ini menunjukan bahwa fluida tersebut relatif tidak mampu mampat atau cenderung inkompresibel. Tidak mampu mampat artinya dibutuhkan perubahan tekanan yang besar untuk menghasilkan perubahan volume yang kecil.Contoh fluida yang memiliki Modulus Bulk yang besar adalah air. Dibutuhkan tekanan sebesar 210 atm hanya untuk memampatkan volume air sebesar 1%. Semakin kecil Modulus maka fluida tersebut semakin mudah untuk dimampatkan.

Lalu bagaimanakah tingkat kompresibilitas pada gas ideal?. Secara fisis dapat diartikan bahwa kompresibilitas gas ideal hanya tergantung pada perubahan tekanan dan tidak tergantung pada perubahan volumenya. Tekanan besar

kompresibilitas gas ideal besar dan sebaliknya tekanan kecil kompresibilitasnya juga kecil. Pada tekanan yang besar yang menyebabkan kompresibilitas besar tidak berarti gas ideal menjadi gas yang inkompresibel. Besar disini relatif terhadap kompresibilitas yang kecil pada tekanan yang kecil, karena kompresibilitas gas ideal yang “besar” masih sangat jauh lebih kecil dari kompresibilitas air yang nilainya sebagai berikut :

 

2,15 x 10 +9 (N/m2) = 2,15 x 10+9 Pa ≈ 2,15 x 10+4 atm

Catatan 1 N/m2 = 1 Pa dan 1 atm ≈ 1,01 x 105 Pa.

 

Dari perbandingan data tersebut kita dapat ambil kesimpulan bahwa air adalah pembanding yang digunakan sebagai standar kompresibilitas dari fluida lain.

Contoh fluida yang dianggap gas ideal adalah udara.Hal ini berdasarkan pada sifat-sifatnya yang mendekati sifat gas ideal yaitu untuk 1 tekanan atm terjadi pengurangan 1 % pada volume udara tersebut. Sehingga dapat dikatakan bahwa perubahan volume yang kecil pada gas dalam kondisi ditekan dengan tekanan yang sangat besar dapat menyebabkan perubahan tekanan yang besar.

Kebalikan dari koefisien kompresibilitas (Ev) disebut isothermal kompresibilitas (α) yang dirumuskan sebagai berikut :

 

Α = 1/κ

α = ((dρ/ρ)/dp)_(T konstan)

 

Nilai Kompresibilitas isothermal (α) suatu fluida menyatakan perubahan volume atau densitas fraksional berhubungan dengan perubahan tekanan.Satuan kompresibilitas isothermal adalah Pa-1.

Salah satu contoh pengaruh temperatur terhadap Bulk Modulus Elasticity atau Koefisien Kompresibilitas air adalah pada temperatur kurang dari 600 C kompresibilitas air mengecil dengan berkurangnya temperatur. Hal ini bisa dijelaskan bahwa temperatur sangat mempengaruhi perubahan volume atau densitas, dengan kata lain perubahan volume/densitas lebih besar dari pada perubahan tekanan. Kondisi serupa terjadi pada temperatur yang lebih besar dari 600 C, dan nilai koefisien kompresibilitas maksimum terjadi pada suhu sekitar 600 C, ini berarti perubahan tekanannya lebih besar dari pada perubahan volume.

Seperti yang kita tahu bahwa secara umum perubahan densitas suatu fluida sangat ditentukan oleh perubahan temperatur daripada oleh tekanan, sebagai contoh: fenomena kenaikan massa udara (gerakan konveksi), arus laut (upwelling), kenaikan asap pada cerobong dan fenomena lain. Ukuran variasi densitas fluida trehadap temperatur pada tekanan konstan disebut koefisien pengembangan volume (the coefficient of volume expansion), β yg didefinisikan sebagai berikut :

 

β=1/ ((d)/dT)_(P konstan)

 

Persamaan tersebut setara dengan rumus berikut :

 

β= -1/ρ (dρ/dT)_(P konstan)

 

Perbedaan kedua persamaan diatas adalah terletak pada tanda koefisien. Koefisien persamaan pengembangan volume yang menggunakan data perubahan volume bernilai positif karena semakin besar gaya pengembang yang didapat maka fluida akan semakin meregang atau volumenya bertambah. Sedangkan Koefisien persamaan pengembangan volume yang menggunakan data perubahan densitas bernilai negatif karena semakin besar gaya pengembang yang di dapat maka fluida akan mengalami pengurangan densitas.

Nilai β yang besar menunjukkan bahwa fluida tersebut “cenderung” merupakan fluida yang mampu dimampatkan dan β yang kecil “biasanya” terdapat pada fluid yang tak mampu dimampatkan. Walau demikian nilai β bukan merupakan “indikator” untuk menentukan fluida kompresibel atau tidak kompresibel, karena besar atau kecilnya nilai β merupakan ukuran relatif. Dari dua jenis atau lebih fluida yang kompresibel dapat mempunyai nilai β yang berbeda, dimana β satu fluida dapat lebih besar drpd fluida lainnya. Demikian pula pada berbagai fluida inkompresibel.

 

1.4 Jenis Aliran Fluida

Pada bagian ini kita akan meninjau kasus fluida bergerak/mengalir. Normalnya, ketika kita meninjau keadaan gerak dari suatu sistem partikel, kita akan berusaha memberikan informasi mengenai posisi dari setiap partikel sebagai fungsi waktu. Tetapi untuk kasus fluida ada metode yang lebih mudah yang dikembangkan mula-mula oleh Euler. Dalam metode ini kita tidak mengikuti pergerakan masing-masing partikel, tetapi kita memberi informasi mengenai keadaan fluida pada setiap titik ruang dan waktu. Keadaan fluida pada setiap titik ruang dan untuk seluruh waktu diberikan oleh informasi mengenai massa jenis (~r, t) dan kecepatan fluida ~v(~r, t). Aliran fluida dapat dikategorikan menurut beberapa kondisi

a. Bila vektor kecepatan fluida di semua titik ~v =~(~r) bukan merupakan fungsi waktu maka alirannya disebut aliran tetap (steady), sebaliknyabila tidak maka disebut aliran tak tetap (non steady).

b. Bila di dalam fluida tidak ada elemen fluida yang berotasi relative terhadap suatu titik maka aliran fluidanya disebut alira irrotasional, sedangkan sebaliknya disebut aliran rotasional.

c. Bila massa jenis adalah konstan, bukan merupakan fungsi ruang dan waktu, maka alirannya disebut aliran tak termampatkan, sebaliknya akan disebut termampatkan.

d.  Bila terdapat gaya gesek dalam fluida maka alirannya disebut aliran kental, sedangkan sebaliknya akan disebut aliran tak kental. Gaya gesek ini merupakan gaya-gaya tangensial terhadap lapisan-lapisan fluida, dan menimbulkan disipasi energi mekanik.

 


 

 

No comments:

Post a Comment

Blogroll